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Let the nth row of the triangle be represented by rn, a list containing elements of that row;
ri,j is the jth number in the ith row of the triangle. Let the colored squares be labeled α . . . ε as
in the given larger diagram, and the other three numbers in the top row being p, q, s such that
r1 = [p, α, α, β, β, q, s].

By definition, two squares with the same color have the same value, so:

γ = r2,3 = r3,1

δ = r2,6 = r3,3

ε = r4,3 = r5,1

Adding together the two elements above each, r2 = [α + p, 2α,α + β, 2β, β + q, q + s], and r3 =
[3α+p, 3α+β, α+3β, 3β+ q, β+2q+ s]. Looking at the definitions of γ and δ, α+β = 3α+p and
q+ s = α+3β. Continuing to add, it can be found that r4,3 = α+6β + q and r5,1 = 10α+5β + p,
and equating those two simplifies to q = 9α − β + p. We will now determine p, q, s in terms of α
and β; moving terms around gives the following three equations:

p = β − 2α

q = 9α − β + p

s = α+ 3β − q

Substituting p into the second equation results in q = 7α, and substituting q into the third equation
results in s = 3β − 6α. p, α, β, q, and s must all be one digit, so α = 1 and q = 7. This simplifies
p and s to p = β − 2 and s = 3β − 6. If β is a single digit (i.e. 0 < β < 10), then so is p (when
β > 2), but in order for s to be a single digit, then 0 < 3β − 6 < 10. Solving this for β results in
2 < β < 6, (the right side of the inequality, when divided by 3, was rounded up to account for the
fact that β has to be an integer), so the only possible values of β are 3, 4, and 5. Below are the
three triangles resulting from those choices. (β goes from 3 to 5 going left to right)

1 1 1 3 3 7 3

2 2 4 6 10 10

4 6 10 16 20

10 16 26 36

26 42 62

68 104

172

2 1 1 4 4 7 6

3 2 5 8 11 13

5 7 13 19 24

12 20 32 43

32 52 75

84 127

211

3 1 1 5 5 7 9

4 2 6 10 12 16

6 8 16 22 28

14 24 38 50

38 62 88

100 150

250

When β = 3, r2,1 = r2,2, so β 6= 3 because all non-colored integers must be distinct. When
β = 4, r1,1 = r2,2, so β 6= 4 for the same reason as above. There are no such issues when
β = 5, and thus the only unique solution to the problem is the boxed triangle on the right, where
(p, α, β, q, s) = (3, 1, 5, 7, 9).

Page 1 of Problem 1

User Id: 15412  Username: DoubleAW  Name: Eugene Bulkin  Email: doubleaw@doubleaw.com Page 1 of 7



Student: Eugene Bulkin
Username: DoubleAW
ID#: 15412 USA Mathematical Talent Search

Year Round Problem

22 2 2

First, every tworrific sequence can be represented by the following sequence:

an =

n−1
∑

i=1

2kn−i(−1)i + (−1)n

where a0 = 1 (by definition), and am−1 + am = 2km where p ≥ 0. kn is the characteristic sequence
of the particular sequence an; since every member ai can be represented by the sum of powers of 2
with alternating sign, this sequence describes all tworrific sequences. kn only has values for n ≥ 1,
as a0 has no powers of 2 to describe.

(a) To find the minimum length, it will be assumed that the last number in any observed sequence
is 2011; if not, then a shorter one with 2011 in it would simply end at that index. It is easily
proven that there are no tworiffic sequences of length 2 or 3; 2012 is not a power of 2, and
the only number that results in a positive sum for both 1 and 2011 that also adds up to a
power of 2 when added to 2011 is 37, but 38 is not a power of 2 either.

Next, consider sequences of length 4 (n = 0 . . . 3). 2011, the final number, is also equal to
2k3 − 2k2 + 2k1 − 1, or 2k3 − 2k2 + 2k1 = 2012. Dividing the equation out by 4 results in
2k3−2 − 2k2−2 + 2k1−2 = 503; since the left side is all even numbers unless an exponent is 0,
exactly one of the exponents must be zero in order for all three to add up to an odd number,
503 (if two were, it would be an even number, and if three were, it would just be 3). If k1 = 2,
then 2k3−2 − 2k2−2 = 502, and since no two powers of 2 have a difference of 502, k1 > 2.
The same goes for k3 because it has the same sign, so k2 would have to be 2. If k2 = 2,
then 2k3−2 + 2k1−2 = 504, but since no two powers of 2 sum to 504, this is a contradiction;
therefore, there are no tworrific sequences of length 4.

This can be done similarly to higher lengths. If n = 0 . . . 4 (i.e. length 5), then 2k4 − 2k3 +
2k2 − 2k1 = 2010. Dividing by 2 yields 2k4−1 − 2k3−1 + 2k2−1 − 2k1−1 = 1005. If k1 = 1,
2k4−2 − 2k3−2 + 2k2−2 = 503, which we know leads to a contradiction; likewise for k3 = 1. If
k2 = 1, then 2k4−3−2k3−3−2k1−3 = 251. If we now consider k1 = 3, then 2k4−3−2k3−3 = 252,
which is possible for k4 = 11 and k3 = 5. Therefore, the smallest possible sequence is of
length 5 , the example of which has characteristic sequence kn = {3, 1, 5, 11} (that particular
sequence is 1, 7, -5, 37, 2011).

(b) Because the sequences of length 5 all have the same basic structure and are symmetric in
terms of parity of the index of k used (that is, k2 and k4 can be switched and 2011 will still
be the last member of the sequence). Therefore, the only possible characteristic sequences k
are permutations of {3, 1, 5, 11} with the first and third members switched and/or the second
and fourth: {3, 1, 5, 11}, {3, 11, 5, 1}, {5, 1, 3, 11}, and {5, 11, 3, 1}, for a total of 4 different
sequences.

Page 1 of Problem 2

User Id: 15412  Username: DoubleAW  Name: Eugene Bulkin  Email: doubleaw@doubleaw.com Page 2 of 7



Student: Eugene Bulkin
Username: DoubleAW
ID#: 15412 USA Mathematical Talent Search

Year Round Problem

22 2 3

R G

1 2

3 4

5 6

The diagram of the cube with people standing on the vertices
can be simplified to the graph on the right, where R is Richard,
G is the Gortha monster, and the numbers represent the other
friends. Designate the action of throwing the potato as A → B

where person A throws it to person B. Then, the problem is simply
finding the probability that Richard throws to the Gortha monster,
or P (R → G).

In general, P (G → ∗) = 0, where ∗ is any player, because the
Gortha monster eats the potato upon catching it. Since the potato
is thrown at random, the probability of a person throwing to any
particular vertex is 1

3
if that vertex is neighboring that person;

P (A → B) = 1

3
if B neighbors A. Then 7 equations can be made relating the probability of either

Richard feeding the Gortha, or another person throwing the potato to Richard (which would then
be substituted into the first probability).

P (R → G) =
1

3
+

1

3
P (1 → R)P (R → G) +

1

3
P (5 → R)P (R → G)

P (1 → R) =
1

3
+

1

3
P (3 → R) +

1

3
P (2 → R)

P (2 → R) =
1

3
P (4 → R) +

1

3
P (1 → R)

P (3 → R) =
1

3
P (1 → R) +

1

3
P (5 → R) +

1

3
P (6 → R)

P (4 → R) =
1

3
P (3 → R) +

1

3
P (6 → R) +

1

3
P (2 → R)

P (5 → R) =
1

3
+

1

3
P (6 → R) +

1

3
P (3 → R)

P (6 → R) =
1

3
P (4 → R) +

1

3
P (5 → R)

For now, we will denote P (N → R) as PN and P (R → G) as G. The first equation can be

simplified to 3G = 1+P1G+P5G, and, solving for G, results in G =
1

3− P1 − P5

. Multiplying the

last six equations by 3 and moving every non-probability term to the left yields new equations:

3P1 − P2 − P3 = 1

3P2 − P1 − P4 = 0

3P3 − P1 − P5 − P6 = 0

3P4 − P2 − P3 − P6 = 0

3P5 − P3 − P6 = 1

3P6 − P4 − P5 = 0

Page 1 of Problem 3

User Id: 15412  Username: DoubleAW  Name: Eugene Bulkin  Email: doubleaw@doubleaw.com Page 3 of 7



Student: Eugene Bulkin
Username: DoubleAW
ID#: 15412 USA Mathematical Talent Search

Year Round Problem

22 2 3

If we let a be a square matrix with the coefficients of the six equations, p be the column matrix
of the variables, and b be the column matrix of the constants on the right side, then the previous
six equations are the same as a · p = b where

a =

















3 −1 −1 0 0 0
−1 3 0 −1 0 0
−1 0 3 0 −1 −1
0 −1 −1 3 0 −1
0 0 −1 0 3 −1
0 0 0 −1 −1 3

















,p =

















P1

P2

P3

P4

P5

P6

















, and b =

















1
0
0
0
1
0

















.

A calculator was used to calculate the inverse of the a (as determining the inverse of a 6 by 6
square matrix is incredibly difficult by hand):

a−1 =
1

256

















124 52 64 32 36 44
57 123 48 56 31 45
59 33 144 40 77 87
47 61 80 136 57 91
28 20 64 32 132 76
25 27 48 56 63 141

















Left ultiplying both sides of a · p = b by a−1 results in a−1b =
[

5

8

11

32

17

32

13

32

5

8

11

32

]T
= p.

The first and fifth elements of this matrix (5
8
) are equal to P1 and P5 respectively, so G = 1

3−2·
5

8

=

4

7
.
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To solve the problem, the worst case scenario will be considered, where Zara is wrong every time
she guesses (until the last time, when she is guaranteed to get it right). Without loss of generality,
assume that Ada’s number is always higher than Zara’s (i.e. it is 2011). To guess Ada’s number,
Zara employs the same strategy as someone trying to guess a fixed number, except the numbers
are slightly different.

First, Zara guesses 1006, as this provides the most even distribution of wrong numbers (the
sets of integers 1 through 1005 and 1007 through 2011 are the same length). When Ada says her
number is higher, now the possible range decreases from [1, 2011] to [1006, 2010], because Ada’s
number changes by ±1, but if her number is at 2011, she must go down. Then, Zara guesses the
number in between those, and Ada changes hers, and so on.

In general, if we consider the numbers 1 . . . 2m + 1, a recurrence relation can be made that
determines what number Zara will guess; in this case, a0 = 1 (no guess yet), a1 = m + 1, and so
on. The range of numbers that Zara has to look at is from her previous guess (an−1) to either 2m
or 2m + 1 (if Ada’s number was 2m + 1, she would have to subtract one, but if it was 2m it now
can go back up). The general form for this relation is an = m + 1

2
an−1 +

1

4
(1 − (−1)n). Using

Mathematica’s RSolve function (which solves recurrence relations), a closed form is found:

an =
1

6
(−2−n(12m+ (−2)n − 4) + 12m+ 3)

. As n → ∞, an → 2m + 1

2
; since Zara will take the floor of each term of the sequence (she can’t

guess a non-integer, but taking the floor of each term will not affect when the sequence reaches
its limit), the sequence is guaranteed to surpass 2m, and thus when she takes the floor, it will be
exactly 2m. This is sufficient for guessing Ada’s number, since if Ada’s number is larger than 2m,
it is 2m+ 1, and thus the only possible number Ada can move to when Zara guesses 2m is 2m as
well, and Zara will then guess 2m again to win.

There is no clean general solution for the first n such that an ≥ 2m, but one can be found for
when m = 1005. Substituting 1005 for m in an results in an = 1

6
(−(−1)n − 150723−n + 12063).

All that is necessary is to find the first n such that an ≥ 2010. This is a non-algebraic equation,
but using a calculator finds that an = 2010 at n ≈ 12.3, and rounding up results in the minimum
number of guesses, 13 .
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For ease of reading, designate a movement of the robot from number a to number b, using n as
the selected integer, as a → b.

Lemma 1. For all positive integers x ≥ 2 there exists a positive integer n such that x → 1

x− 1
.

Proof. x → 1

x− 1
implies

x+ n

1 + xn
=

1

x− 1
. Cross-multiplying results in 1 + xn = (x+ n)(x− 1) =

x2 + xn− x− n, or n = x2 − x− 1. n will always be an integer if x is an integer, and for n to be
positive, x2 − x − 1 > 0. The roots of this quadratic are ≈ ±1.618. The smallest positive integer
such that n is a positive integer is 2, so x ≥ 2.

Lemma 2. For all positive integers x ≥ 2 there exists a positive integer n such that
1

x
→ x− 1.

Proof.
1

x
→ x − 1 implies

1 + xn

x+ n
= x − 1, which, after cross-multiplying, results in the same

equation above, 1 + xn = (x+ n)(x− 1), and thus the same result follows.

Lemma 3. For all odd positive integers x ≥ 3 there exists a positive integer n such that x → 1

x− 2
.

Proof. x → 1

x− 2
implies

x+ n

1 + xn
=

1

x− 2
, and after cross-multiplying this yields 1 + xn = (x +

n)(x− 2) = x2 + xn− 2x− 2n, or n = 1

2
(x2 − 2x− 1). Because x2 − 1 is even for all odd x, n will

be an integer for only odd x. The positive root of this quadratic is x = 1+
√
2 ≈ 2.414, so the only

possible positive integer values for x are those ≥ 3.

If the robot begins at 2011, then using lemma 3, there exists a valid n such that 2011 → 1

2009
.

It can then move from 1

2009
to 2008 using lemma 2, and so on, such that the robot moves along the

pattern 2011 → 1

2009
→ 2008 → . . . → 2.
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Note: Of course, this is nowhere near an optimal solution. I conjecture that the shortest

possible length of a sequence is six. One possible solution is 2011 → 1

671
→ 111 → 1

23
→ 7 → 1

3
→

2. While I was unable to find a proof for the fact that the robot cannot travel from 2011 to 2 in
four steps, I did prove that it cannot do it in two, shown below.

Lemma 4. The robot oscillates between (0, 1) and (1,∞), alternating each step.

Proof. let x = p
q
< 1, q > p and assume p+nq

q+np
< 1. This implies q+np > p+nq or q− p > n(q− p),

but n must be a positive integer > 1, so this is a contradiction. If x = p
q
> 1, p > q, and the same

contradiction occurs. Thus, x < 1 ↔ x → y, y > 1, and x > 1 ↔ x → y, y < 1.

Theorem 1. There are no sequences of steps of odd length from one integer to another.

Proof. Using lemma 4, it is clear that the robot, when at an integer, must go through a number
less than 1 before it can reach another integer; that is, for the robot to go from (1,∞) → (1,∞),
first it must go from (1,∞) → (0, 1). Thus, to go from one integer to another, a robot must make
at least two steps, and this proceeds for any integer because Z

+ −{0, 1} ⊂ (1,∞), where Z
+ is the

set of non-negative integers.

Lemma 5. All x = p
q
, p < q such that x → 2 are of the form x = k

2k+3
.

Proof. In order for p
q
→ 2, p+qn

q+pn
= 2, or n = p−2q

2p−q
. In order for n to be an integer, p−2q

2p−q
must also be

an integer. Using long division, p−2q
2p−q

= ± 3p
q−2p

+2 (sign depending on whether x ∈ (0, 1
2
) or (1

2
, 1));

therefore, for n to be an integer, 3p
q−2p

= k for some integer k. Solving for p
q
results in p

q
= k

2k+3
,

which makes n = k + 2, an integer, so x = k
2k+3

always has an integer n such that x → 2.

Theorem 2. There exist no sequences of length 2 from 2011 to 2.

Proof. Using lemma 5, in order for 2011 to reach 2 in two steps, 2011 → k
2k+3

must be possible

for some integers n, k. Solving the equation n+2011

2011n+1
= k

2k+3
for n results in n = 4021k+6033

2009k−3
, or,

after division, n = 1

2009
(12132360
2009k−3

+ 4021). For n to be an integer, 2009k − 3 must divide 12132360

and 12132360

2009k−3
+ 4021 must be a multiple of 2009. 2009 can be factored as 72 · 41, and 12132360 to

23 · 32 · 5 · 67 · 503, which makes 96 divisors. Adding 3 to each divisor and dividing by 49 results in
the only integers being 539 and 22638, but dividing by 41 results only results in 123 and 101106.
Since no divisor of 12132360 plus 3 shares the factors of 2009, there is no k > 0 such that n will
ever be an integer, making 2011 → k

2k+3
impossible.
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